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A B S T R A C T   

Stocking hatchery propagated long-spined sea urchins Diadema antillarum is a priority option for recovery of this 
keystone herbivore on Caribbean reefs. However, information on captive culture of D. antillarum is very limited 
due to historical lack of successful juvenile production from gametes in the hatchery. In this study, hatchery 
propagated D. antillarum juveniles were cultured using two diets, commercially available herbivore pellets and 
dried nori, with the presence/absence of stony coral Acropora cervicornis skeleton to understand how diet and 
habitat complexity affect growth and behavior of juveniles. Juvenile urchin growth, and the diel pattern of 
feeding and foraging behavior were significantly affected by diet type. Juveniles fed dried nori gained signifi
cantly higher live weight and test diameter than those fed herbivore pellets. Juvenile urchins displayed nocturnal 
feeding and foraging behavior irrespective of diet types and presence/absence of coral structure. Presence/ 
absence of coral structure did not affect growth and diel pattern of feeding and foraging behavior, but modulated 
habitat usage patterns. Survival of juveniles was neither affected by diet types nor the presence/absence of coral 
structure. This study concludes that dried nori is a superior diet to herbivore pellets for juvenile urchin culture. 
Since the presence of coral structure influenced habitat usage patterns, provision of rugose structure in captivity 
has the potential to convey the innate shelter seeking behavior of juvenile urchins.   

1. Introduction 

Coral reef ecosystems are under severe threat due to multiple addi
tive stressors including pollution, disease, recruitment failure, over 
harvesting of reef species and global climate change (Pandolfi et al., 
2003). Caribbean coral reefs lost structural complexity with the demise 
of scleractinian corals because of bleaching, disease, and macroalgae 
overgrowth (Alvarez-Filip et al., 2009; Cabanillas-Terán et al., 2019). 
Recent local restoration paradigms include a set of wild collected corals 
propagated in an ocean-based nursery, and outplanted to degraded sites 
via “coral gardening” (Young et al., 2012; Lirman et al., 2016; Greer 
et al., 2020). While coral gardening is a viable option to increase local 
populations, a holistic ecological approach that also addresses the 
stressors leading to reef decline is necessary to attain long-term sus
tainability of reef ecosystems. 

Restoration of a keystone herbivore, the long-spined sea urchin 

Diadema antillarum, along with coral outplanting is considered as one of 
the potential approaches to improve long-term sustainability of Carib
bean reefs (Francis et al., 2019). Coral cover and D. antillarum popula
tion recovery are interdependent as corals provide habitat for 
D. antillarum shelter, and in turn, D. antillarum graze upon macroalgae 
and reduce competitive interactions that inhibit coral recruitment (Lee, 
2006; Idjadi et al., 2010; Clemente and Hernández, 2008). Recovery of 
D. antillarum populations within the reef ecosystem could alleviate the 
burden of macroalgal competition. Restocking a Pacific species of 
hatchery cultured sea urchins, Tripneustes gratilla, has been beneficial in 
controlling an invasive alga on the reefs of Hawaii, USA (Westbrook 
et al., 2015; Neilson et al., 2018). Large-scale culture and restocking 
efforts of D. antillarum could represent a viable aid to coral reef recovery 
due to the ecological services provided by this species (Moulding and 
Moore, 2015; Rogers and Lorenzen, 2016; Patterson, 2019). 

Diadema antillarum, a large-bodied herbivore and bioeroder, was a 
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highly abundant species for thousands of years throughout Caribbean 
and Western Atlantic reefs (Donovan, 2005; Lessios et al., 2001). This 
species experienced unprecedented mortalities in 1983–84 due to an 
unknown epizootic disease (Lessios et al., 1983, 1984), leading to a 
phase shift from coral dominated to macroalgae dominated Caribbean 
reefs (Hughes et al., 1987). Natural D. antillarum recovery has been very 
limited, and the recent population density was estimated to be only 12% 
compared to the density before the die-off event (Lessios, 2016). Due to 
the challenges of successful larval rearing to settlement, hatchery cul
ture of D. antillarum at scales needed for restocking programs has been a 
challenge for decades (Eckert, 1998; Leber et al., 2010). Very limited 
information is currently available for ex-situ culture of D. antillarum ju
veniles, including basic information on the requirements of diets and 
structural complexity. D. antillarum predominantly feed on benthic algal 
turf and macroalgae (Sammarco, 1980), stay in a structurally complex 
area during daytime to avoid predation, and emerge at night to forage 
(Ogden et al., 1973). Captive culture has been shown to induce behav
ioral changes in juvenile D. antillarum, potentially reducing predator 
avoidance in the natural environment (Sharp et al., 2018). A novel 
recirculating system for D. antillarum larvae (Pilnick et al., 2021) and 
effective culture protocols (Pilnick et al., 2022) have been developed by 
our group, and recently produced over 500 juvenile urchins from a batch 
of fertilized eggs. This success in larval rearing has given us the unique 
opportunity to study growth and behavior of hatchery-propagated ju
venile D. antillarum. 

Sea urchin aquaculture is primarily focused on improving gonad 
quality, as this organ represents a high value seafood item (McBride, 
2005). Provision of a suitable diet improves production efficiency, 
health status and survival of juveniles in grow-out systems. Although 
dietary requirements of juvenile sea urchins are available for some 
species (Kennedy et al., 2005; Cárcamo, 2015), information on 
D. antillarum juvenile culture is very limited. Insights on D. antillarum 
growth and behavior in captivity are limited to two studies (Idrisi et al., 
2003; Sharp et al., 2018). Other studies have examined D. antillarum 
behavior in natural environments in response to habitat complexity, 
predators and conspecifics (Carpenter, 1984; Lee, 2006; Clemente and 
Hernández, 2008). In this study, we investigated growth and behavior of 
D. antillarum fed two commercial diets. Due to the cryptic nature of this 
species, we also tested the hypothesis that including structural habitat 
would affect growth and behavior of D. antillarum juveniles in captivity. 
Growth, survival, diel pattern of feeding and foraging behavior of 
D. antillarum juveniles were thus measured as response variables to the 
treatment effects of diet and presence/absence of supplemental coral 
skeleton structure. 

2. Materials and methods 

2.1. Source of juvenile urchins, diets, and coral skeletons 

Diadema antillarum can be found in the shallow hard-bottom reefs in 
the Caribbean and Atlantic Ocean. This species is most abundant at 
temperatures ≤ 35 ◦C and salinity ≥ 30 ppt within areas of low to 
moderate wave action (Ogden and Carpenter, 1987). 

This experiment was conducted at The Florida Aquarium’s Center for 
Conservation in Apollo Beach, Florida, USA. Competent D. antillarum 
larvae produced from broodstock obtained from the Florida Keys were 
settled in April 2021 and a subset of 204, post-settled juveniles (10 
weeks old) were used in this study. At the beginning of the experiment, 
juvenile live weights (mean ± SE) and test diameters were 0.23 ± 0.05 g 
and 5.68 ± 0.53 mm, respectively. 

Diadema antillarum juveniles were fed with either dried nori or her
bivore pellet for six weeks. Dried nori was made of roasted seaweed of 
the genus Pyropia and distributed by One Organic (San Francisco, USA). 
Herbivore pellets (1 mm size) were made from a mix of chlorella algae, 
kelp, spirulina, ulva, krill and squid, and distributed by New Life Spec
trum® (FL, USA). Triplicate samples of both diets were analyzed for 

proximate composition (Table 1) based on AOAC (2005) procedures 
(moisture - procedure 930.15, protein - procedure 990.03, crude fat - 
procedure 920.39, fiber - procedure 962.09 and ash - procedure 942.05). 
Nitrogen-free extract (NFE) or carbohydrate was calculated as NFE =
100 – [%protein + %crude fat + %fiber + %ash]. 

Coral skeletons were obtained from nursery-propagated staghorn 
coral Acropora cervicornis colonies that had experienced natural mor
tality. All coral tissue was removed from the skeletons before they were 
bleached and stored for two years prior to use. Skeletons were cut and 
glued to create roughly dome-shaped structures with 15 cm length, 11 
cm width and 9 cm height. 

2.2. Juvenile culture system 

A recirculating aquaculture system (RAS) with 605-liter capacity was 
built to culture juveniles. Life support system components in the RAS 
included foam fractionators, fluidized media reactors with activated 
carbon, granular ferric oxide, poly-filter, 25 µm mechanical cartridge 
filtration and bio-media biological filtration. Temperature was main
tained at ~25.5 ◦C using a submersible 800 watt titanium heating 
element and a ¼ horsepower chiller (Aqualogic, Connecticut, USA). The 
system was integrated with a sump (dimension 225 × 36 × 53 cm) and a 
fiberglass culture tank (dimension 240 × 86 × 30 cm). A set of five 
Odyssea 91 cm dual marine aquarium lights (39 W wattage, 7000 initial 
lumen) was installed at 30 cm distance from each other and at ~76 cm 
above the water surface. The juvenile culture system was in a room with 
a large north-facing window that allowed ambient light for 13.5 hrs 
during the time of year at which the experiment was conducted. A total 
of twelve plastic containers (each with 30.5 × 24.1 × 20.3 cm dimen
sion) were placed inside the culture tank (Fig. 1a). Each container was 
filled with 7.5 L saltwater and stocked with a total of 17 juveniles (43.2 
square cm/juvenile). The containers were supplied continuous gravity- 
fed waterflow (0.4 L/min/container) from a 95 L capacity header 
tank. Saltwater then passed through a perforated T-bar PVC overflow (1 
mm mesh attached) to allow continuous water exchange (Fig. 1b, c). The 
position of culture containers was rotated each fortnight to eliminate 
confounding effects of light and container position on response 
variables. 

2.3. Experimental design 

Experimental design is presented in Table 2. 

2.4. Water quality parameters 

Natural sea water (~35 ppt) was used to culture juveniles with a 40% 
total system water change weekly. The natural seawater was collected 
from the Gulf of Mexico, sand filtered, ozonated and passed through 
0.35-micron cartridge filter before use. Temperature was recorded daily 
using the cloud-based Apex Fusion system (https://apexfusion.com/). 
Salinity and pH were measured with a portable Hach HQ30D meter. 
Ammonia, nitrite, nitrate, and phosphate were measured using a Hach 
DR6000 spectrophotometer. Alkalinity was measured using a Metrohm 
OMNIS titration system. Alkalinity data were generated using EPA 
method 310.1 and a Single Endpoint Titration (SET) with a titrant of 
0.1 mol/L sulfuric acid. Hardness was measured using a Dual Endpoint 
Titration (DET) on a Metrohm dCa Ion Selective Electrode (ISE). An 
ammonia buffer was added to the sample, which was then titrated with 
0.05 mol/L ethylenediaminetetraacetic acid (EDTA). Calcium and 
Magnesium values were calculated from the difference between the two 
titration endpoints. 

2.5. Feeding 

Diets were provided daily at 4:00 pm and the uneaten food and feces 
were siphoned out on the next day. Juveniles were fed to satiation with 
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an equivalent weight of dried nori and herbivore pellet. Feed ration was 
maintained within 4.5–8.0% of live body weight of juveniles. 

2.6. Juvenile measurements 

Live weight and test diameter of individual urchins were measured 
each fortnight. A transparent polystyrene container filled with saltwater 
was placed on laboratory scale (0.1 g readability). Juvenile urchins were 
dislodged and collected using curved forceps, gently shaken off to 
remove water, and were placed in the polystyrene container. Test 
diameter was measured by placing a ruler underneath the polystyrene 
container. 

2.7. Observation of diel pattern in feeding, foraging, and habitat usage 
behavior 

Feeding, foraging, and habitat usage behavior were observed once a 
week at 12:00 am, 6:00 am, 12:00 pm and 6:00 pm for six weeks. A 
juvenile found to be staying on the food was considered as feeding, while 
a juvenile away from food was considered as not feeding. A juvenile 
found to be staying on the bottom of the container was considered 
foraging. A juvenile found to be staying on/under the PVC outflow and 

supplemental coral skeleton was considered as using structure, while a 
juvenile staying on the bottom/wall of the container was considered as 
not using structure. 

2.8. Statistical analysis 

Based on Shapiro-wilk and Levene’s statistical test, data met the 
assumptions of normality and homogeneity of variance, respectively. All 
proportional behavior data were arcsine transformed. Initially, a facto
rial design was used to test interaction effect of diet and supplemental 
coral skeleton strucutre on growth and behavior. Due to the lack of an 
interaction effect, data were pooled by diet and structure treatments and 
were analyzed separately. The effects of diet or supplemental strucutre 
on growth and behavior were analysed using independent sample t-test. 
All data were analysed using IBM SPSS (v. 27). 

3. Results 

3.1. Water quality 

All the water quality parameters were stable throughout the exper
iment except for ammonia, which reached 0.21 (mg/L) in week five. 

Table 1 
Proximate composition (mean ± SD, n = 3) of the diets used in this study.  

Diet type Protein 
(% dry matter) 

Crude fat (% dry matter) Nitrogen free extract (% dry matter) Crude fiber (% dry matter) Ash (% dry matter) Moisture (%) 

Dried nori 44.54 ± 0.25 1.07 ± 0.04 38.41 ± 0.67 2.60 ± 0.70 10.32 ± 0.08 3.06 ± 0.26 
Herbivore pellet 38.77 ± 0.07 4.98 ± 0.41 26.92 ± 0.75 5.63 ± 0.15 14.86 ± 0.01 8.83 ± 0.23  

Fig. 1. Long-spined sea urchin, Diadema antillarum juvenile culture system, (a) top view of the fiberglass tank, (b) a representative container with supplemental coral 
structure (c) a representative container without supplemental structure. 
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Calcium and magnesium remained within the range of natural seawater. 
These divalent cations are indicators of hardness and an important 
component of skeletal structure in calcareous marine organisms. Data on 
water quality parameters are presented in Table 3. 

3.2. Growth of juveniles 

Juveniles fed with dried nori gained more live weight (mean ± SD) 
and test diameter than those fed herbivore pellet after six weeks (dried 
nori: 0.79 ± 0.07 g live weight and 11.71 ± 0.55 mm test diameter; 
herbivore pellet: 0.70 ± 0.20 g live weight and 10.24 ± 1.03 mm test 
diameter). No significant interaction effect of diet and supplemental 
structure was found on live weight (F 1,1 = 0.75, P = 0.39) and test 
diameter size (F 1,1 = 0.48, P = 0.49). When final growth data were 
compared at six weeks, significant differences were found in live weight 
(t 10 = 2.22, P < 0.05) and test diameter (t 10 = 2.81, P < 0.05) among 
juveniles fed herbivore pellet vs dried nori (Fig. 2). No significant dif
ference in live weight (t 46 = 0.09, P = 0.93) or test diameter (t 46 =

0.22, P = 0.83) was found for juveniles cultured with the presence or 
absence of supplemental coral structure (Fig. 2). 

The daily growth of juveniles fed dried nori was numerically faster 
than herbivore pellet (dried nori: 13.22 ± 1.9 mg/day increase in live 
weight and 0.27 ± 0.02 mm/day increase in test diameter; herbivore 
pellet: 11.46 ± 5.14 mg/day increase in live weight and 0.24 
± 0.03 mm/day increase in test diameter; Fig. 3). 

3.3. Survival 

Survival of juveniles was 99% at the end of the experiment, therefore 

diet or supplemental structure did not affect survival. A total of 2 ju
veniles died in separate tanks fed with herbivore pellets and no death 
was recorded among juveniles fed with dried nori. 

3.4. Diel pattern of feeding and foraging 

A diel pattern of feeding and foraging behavior was found among 
juvenile urchins irrespective of diet type and presence/absence of sup
plemental coral structure. The highest percentage of juveniles fed and 
foraged at midnight, which gradually decreased in the morning and 
evening, and was lowest at noon (Fig. 4). In the factorial analysis, no 
significant interaction effect of diet and supplemental structure was 
found on the percentage of juveniles feeding (F 1,1 = 0.10, P=0.75) or 
foraging (F 1,1 = 0.19, P=0.66). When diets were compared in the diel 
cycle, significant statistical differences were found in percentage of ju
veniles feeding at 6 am (t 10 = 2.62, P<0.05), 12 pm (t 10 = 3.27, 
P < 0.05) and 6 pm (t 10 = 2.84, P < 0.05), but no statistical difference 
was found at 12 am (t10= 0.09, P=0.93). In addition, significant statis
tical differences were found in percentage of juveniles foraging at 6 am 
(t 6 = 3.78, P < 0.05), 12 pm (t 6 = 2.73, P < 0.05) and 6 pm (t 6 = 2.39, 
P < 0.05), but no statistical difference was found at 12 am (t6=0.95, 
P=0.38). No significant difference was found in diel pattern of feeding 
(t46= 0.17, P=0.87) and foraging (t30= 0.23, P=0.82) in the presence/ 
absence of supplemental coral structure. 

3.5. Diel pattern of habitat structure usage 

A similar diel pattern of habitat structure usage was observed irre
spective of the presence or absence of supplemental coral structure. 
Higher proportions of juveniles used habitat structure during day-time 
compared to night-time (Fig. 5). A higher percentage of juveniles used 
habitat structure with the presence of supplemental coral structure than 
without coral structure (t 46 = 5.7, P < 0.05). 

4. Discussion 

Information on captive culture of D. antillarum is very limited due to 
the historic lack of hatchery produced juveniles. This study fills out 
important knowledge gaps on captive culture of D. antillarum juveniles 
in response to commercial diets and structural complexity. Factors such 
as nutritional composition, food preference, palatability, and di
gestibility of the diets affect growth of sea urchins (Daggett et al., 2005; 
Kennedy et al. 2005; Dworjanyn et al., 2007; Zuo et al., 2017). The final 
live weight and test diameter of juveniles fed dried nori was significantly 
higher than those fed herbivore pellet. Among the elements of proximate 
composition – dried nori had higher protein content, but herbivore 
pellet had higher crude fat, crude fiber, ash and moisture content. Pro
tein is the primary source of energy, therefore a diet high in protein 
spares energy for somatic growth. Direct assimilation of nitrogen from 
protein in Ulva macroalgae and a pelleted diet have been demonstrated 
in marine invertebrate culture (Sánchez et al., 2012). Higher protein 
content could increase nitrogen assimilation of dried nori versus her
bivore pellets, leading to higher growth of juveniles. Juvenile sea urchin 
S. intermedius gained significantly higher weight when fed a 24% protein 
diet than a 12% protein diet (Zuo et al., 2017). Eddy et al. (2012) found 
that 22% protein was enough to support maximum growth of juvenile 
green sea urchins S. droebachiensis when the diet was formulated with 
high carbohydrate (40%). Compared to carnivorous species, the protein 
requirements of echinoderms are low (Bai et al., 2016). In this study, 
protein content of both dried nori and herbivore pellet was higher than 
the optimum protein level required in other urchin species (Eddy et al., 
2012; Zuo et al., 2017), and thus protein was likely not the primary 
factor for the growth differences observed in this study. 

Among other elements of proximate composition in the diets, crude 
fat is an important component for energy storage. Herbivore echino
derms have a low energy storage requirement except for gamete 

Table 2 
Diets and supplemental coral structure used to culture long-spined sea urchin, 
Diadema antillarum juveniles.  

Treatment 
no 

Container 
number 

Treatment design 

Diet type Supplemental coral 
structure  

1  1 Herbivore 
pellets 

Present  

3 Herbivore 
pellets 

Present  

5 Herbivore 
pellets 

Present  

2  7 Dried nori Present  
9 Dried nori Present  

11 Dried nori Present  
3  2 Herbivore 

pellets 
Absent  

4 Herbivore 
pellets 

Absent  

6 Herbivore 
pellets 

Absent  

4  8 Dried nori Absent  
10 Dried nori Absent  
12 Dried nori Absent  

Table 3 
Water quality parameters recorded throughout the juvenile culture period.  

Water quality parameters Value (mean ± SD) n 

Temperature (◦C) 25.8 ± 0.2  46 
Salinity (ppt) 35.4 ± 0.6  46 
pH 8.1 ± 0.1  8 
Alkalinity (mg/L) 123 ± 7  8 
Ammonia (mg/L) 0.05 ± 0.08  8 
Nitrite (mg/L) 0.008 ± 0.004  4 
Nitrate (mg/L) 0.9 ± 0.1  4 
Calcium (mg/L) 436 ± 12  8 
Magnisium (mg/L) 1333 ± 44  4 
Phosphate (mg/L) 0.03 ± 0.01  8  
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production (Lawrence, 2020). Both diets used in this study contained a 
very low percentage of crude fat, which was feasibly enough to support 
energy storage requirements. Fiber and ash are the indigestible portion 
of the diet that contributes to production of solid waste or feces. Ash 
content is an indicator of minerals and inorganic residue that remains 
after water and organic matter are removed from a diet. Dried nori 
contained less crude fiber and ash, therefore, dried nori was theoreti
cally more digestible than herbivore pellet, which might have contrib
uted to higher growth of juveniles. One shortcoming of the present study 
was an inability to quantify total consumption of either diet. By the time 
excess diets and feces were siphoned out the day following feeding, diets 
had deteriorated and become mixed with feces to a point that drying and 
weighing uneaten food with precision was not possible. A future study 
could use more stable diets (e.g. a large block of food) or siphon more 
frequently to quantify total consumption for a more complete picture of 
the causes for differences in growth between treatments. 

Naturally occurring biofilms that grew in the juvenile culture system 
cannot be ruled out as an important source of nutrition. Juveniles were 
found to scour biofilm from all culture containers irrespective of diet 
type or addition of structure. The type and extent of biofilm growth was 
qualitatively similar across the containers, likely due to continuous 

water exchange, common lighting, and daily removal of waste. Thereby, 
biofilm intake likely did not contribute to the difference in juvenile 
growth observed between diet treatments. 

Nocturnal behaviors evolved in echinoids to avoid predation by 
minimizing overlap of daily activity with potential predators (Nelson 
and Vance, 1979). In the natural environment, D. antillarum aggregate in 
reef crevices and forage at night within a short distance from shelter. 
The nocturnal behavior of diadematid species prioritizes protection 
against diurnal predators over food acquisition, which impacts their 
growth and survival negatively (Levitan, 1988, 1989). Propagation of 
D. antillarum juveniles in captive conditions without predation pressure 
is a key means of improving survival relative to wild urchins. Shelter 
homing behavior of D. antillarum improved with predation pressure 
(Carpenter, 1984), therefore simulation of captive predation pressure in 
future studies might consider potential tradeoffs between lower survival 
in captivity, but higher survival on the reef after restocking. In this 
study, we attempted to understand how the nocturnally active and 
day-time shelter seeking behaviors develop without the presence of 
potential predators. This study found no potential difference in feeding 
and foraging behavior due to the presence or absence of supplemental 
coral structure, suggesting that nocturnal feeding is an innate behavior 

Fig. 2. Live weights (g) and test diameter size (mm) of long-spined sea urchin, Diadema antillarum, juveniles in response to diet and presence/absence of supple
mental coral structure. Each data point represents mean ± SE of six replicates. Asterisks (*) denote significant statistical differences (P < 0.05) between treatments 
for a data point. 

Fig. 3. Weight gain (mg/day) and test diameter increase (mm/day) in long-spined sea urchin, Diadema antillarum, juveniles fed herbivore pellet and dried nori diets. 
Each data point represents mean ± SE of six replicates. 
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of D. antillarum. However, Sharp et al. (2018) found a lack of shelter 
seeking behavior in hatchery propagated D. antillarum relative to their 
wild conspecifics. During daytime, almost 90% of wild collected juve
niles used shelters whereas less than 20% hatchery propagated juveniles 
exhibited this behavior. Sharp et al. (2018) noted that the discrepancy in 
diel activity pattern among hatchery propagated urchins was due to lack 
of crevice shelter in captive culture. 

In this study, juvenile D. antillarum displayed a nocturnal feeding and 
foraging behavior, but diet type modulated the proportion of juveniles 
feeding and foraging. Given previous results and the understood 
importance of structural complexity to D. antillarum behavior (Sharp 
et al., 2018; Bodmer et al., 2021), it was surprising that this study 
revealed a greater influence of diet type on feeding and foraging 
behavior than the presence of supplemental structure. Empirical evi
dence suggests that foraging behavior can also be influenced by the 
nutritional status and food availability (Hart and Chia, 1990). In addi
tion to proximate composition, texture and potentially palatability of 
herbivore pellets and dried nori were also different. Dried nori was 
observably less dense and thereby occupied more physical space than 
herbivore pellets. This might have contributed to higher nori accessi
bility during feeding, as the diets were fed on an equivalent weight basis. 
Further, dried nori was entirely plant-based, whereas herbivore pellet 
contained krill and squid meal. Since D. antillarum is primarily a mac
roalgae grazer, dried nori may have been more palatable, as evidenced 
in other sea urchin species such as Tripneustes gratilla (Dworjanyn et al., 
2007). The palatability aspect could also be related to growth, as higher 

proportions of juveniles fed on dried nori than herbivore pellet during 
the diel cycle, which may have led to relatively faster growth. 

Habitat complexity has been found to affect nocturnal sheltering 
behavior of D. antillarum, whereby hatchery propagated urchins dis
played less competence in predator avoidance than wild conspecifics 
(Sharp et al., 2018). In this study, we attempted to test whether the 
availability of rugose structure affected growth and behavior of juvenile 
urchins by providing supplemental coral structure in half of experi
mental replicate tanks. It is important to note that neither treatment was 
devoid of structure, as all replicate tanks contained a PVC outflow on the 
form of a T-bar (see Fig. 1). In addition, the beveled corners of the 
containers provided some degree of structure. This facilitated some use 
of structure by juvenile urchins even in the treatment that did not 
receive coral skeleton. Our results indicated that neither growth nor 
feeding/foraging behavior of juveniles was affected by the presence or 
absence of coral skeleton structure. However, a significantly higher 
percentage of juveniles used habitat structure when coral skeleton was 
present. Since provision of supplemental coral skeleton occupied more 
physical space within a tank, this could be partially due to the fact ju
veniles were simply more likely to find available hiding space when 
structure was more abundant. Laboratory experiments with wild origin 
animals revealed that D. antillarum are naturally attracted to shelters, 
but the chemical signals from conspecifics and predators modulate 
shelter usage pattern (Kintzing and Butler, 2014). Presence of conspe
cifics persuades against aggregation within shelters, but predation 
pressure persuades in favor of aggregation within shelter. In a natural 
environment, reductions in predation threat reduced shelter seeking 
behavior of reef dwelling echinoids (McClanahan and Muthiga, 1988; 
Clemente et al., 2010). Since juveniles propagated in the hatchery do not 
experience predation pressure, their predator avoidance behaviors could 
be less pronounced. 

This study concludes that D. antillarum juveniles can be cultured in 
captivity using both herbivore pellets and dried nori, but macroalgae 
should be considered as the primary constituent of an optimal diet. We 
have observed a bottleneck in culture shortly after settlement when 
juveniles are yet to develop hardened mouthparts and appear to feed on 
benthic bacterial or algal biofilms. A similar shortcoming was also 
observed in T. gratilla with less than 1% post-settlement survival (Mos 
et al., 2011). A better understanding of the ontogeny of nutritional and 
physiological requirements of newly settled urchins should be investi
gated in future studies to improve survival of juveniles. Although 

Fig. 4. Diel pattern of feeding and foraging in long-spined sea urchin, Diadema antillarum, juveniles in response to diets and presence/absence of supplemental coral 
structure. Each data point represent mean ± SE of six replicates. Asterisks (*) denotes significant statistical differences between treatments for a data point. 

Fig. 5. Diel pattern of structure usage in long-spined sea urchin, Diadema 
antillarum, juveniles with the presence or absence of supplemental coral 
structure. Each data point represents mean ± SE of six replicates. 
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nocturnal behavior of juveniles did not disappear because of predator 
absence and captivity, some alterations of behavior could be expected 
due to diets and habitat complexity level. Dame (2008) indicated that 
the use of artificial crevice habitat in natural settings has potential to 
increase D. antillarum survival. Paradoxically, an increase in habitat 
complexity could also favor the abundance and diversity of other species 
including potential urchin predators, thereby a balance in habitat 
complexity should be taken into consideration when implementing coral 
reef restoration efforts (Mattila et al., 2008). In the next step, in-situ 
monitoring of survival of the hatchery propagated juveniles should be 
prioritized to evaluate restocking strategies. 
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